
Patterns to Measure and Utilize Trust
in Multi-Agent Systems

Gerrit Anders, Jan-Philipp Steghöfer, Florian Siefert, and Wolfgang Reif
Institute for Software & Systems Engineering

Augsburg University, Germany
E-Mail: {anders, steghoefer, siefert, reif}@informatik.uni-augsburg.de

Abstract—This paper introduces three patterns to measure
and utilize trust values in multi-agent systems (MAS). They
allow a software engineer to incorporate mechanisms to gauge
the benefit of interactions with other agents into the modeling
and design process. In particular, patterns for trust from direct
observation, reputation, and Trusted Communities are described.
Each pattern contains the elements necessary to incorporate trust
into a MAS and the collaboration required between the elements
to make use of the measured values. The application of the
patterns is demonstrated with an example from the domain of
energy management systems.

I. INTRODUCTION

Trust is the basis for cooperation within an organization or
society. It influences an individual’s thinking, behavior, and
interactions. Thus, as in real life, trust is a key enabler for
cooperation in software systems consisting of multiple inter-
dependent entities, such as multi-agent systems (MAS) [1].

In MAS, autonomous proactive entities interact with each
other in diverse ways to achieve a mutually favorable outcome.
Just like in real life, interactions can be exploited for the
benefit of only one party. One way to counter such detrimental
behavior is to incorporate trust in the system and record the
way an interaction partner behaved. If agents continuously
interact with the same interaction partners, they can use their
own interaction history (direct trust) to assess another agent.
If interaction partners change often, a form of reputation [2]
is beneficial which allows all agents to profit from the experi-
ences of a few. In cases where it is desirable to form groups
of trusted agents, Trusted Communities [3] can be used.

Trust and models to measure and use it are often described
in an abstract mathematical fashion (e.g., [2], [4]). Existing
trust management architectures and frameworks (for a survey,
see [5]) in many cases give no guidance on their concrete
implementation and are often focused on the algorithmic
aspects of trust management (e.g., [6]) or subsume all trust-
related functionality in an opaque trust manager [7]. Research
on the software engineering aspects of trust is either concerned
with the general possibility to use patterns to incorporate trust
during the design process [8] or suggests specific mechanisms
in specific domains (e.g., service-oriented computing [9]).

This paper synthesizes these existing works into patterns
that cover various requirements in the very general setting
of MAS. The patterns therefore support a software engineer
in implementing these well-established concepts into a MAS.
Different models of trust and reputation from literature can

easily be adapted and implemented for use with them. This
approach offers many advantages. The abstract trust manage-
ment systems and trust models described in the literature are
complex and difficult to implement, both due to their intricacy
and the way they are presented. On the other hand, they
offer functionality that is often not required in an application
or are missing a crucial feature. With the patterns proposed
in the following, trust management facilities can be tailored
to an application and become part of both the design and
implementation process. In many cases, this tight integration
allows for quicker and more targeted development.

Trust is a complex concept that consists of multiple
facets [10]. While the patterns themselves are generic and can
be used to measure and use values of any facet, this paper
focuses on credibility, i.e., an agent’s willingness to participate
in an interaction in a desirable manner. This view corresponds
to the use of the term “trust” in literature on MAS. As agents
are adaptive and can change their behavior, trust can change
and deteriorate. Also, agents can behave differently towards
different agents, making trust subjective and thus intransitive.
Often, agents fulfill different functions in a system and their
behavior depends on external factors. Therefore, an agent’s
role and the context of the interaction need to be regarded [11].

The paper is structured as follows: Sect. II introduces
concepts that are important to all three patterns and the
infrastructure necessary to store and retrieve trust data. Patterns
for direct trust, reputation, and Trusted Communities are
introduced in Sect. III. Their application to a MAS for energy
management is demonstrated in Sect. IV. The paper concludes
with a summary and an outlook.

II. COMMON CONCEPTS AND INFRASTRUCTURE

From the body of literature and our own experience, a
set of key concepts necessary to measure and use trust in
MAS, depicted in Fig. 1, emerges. As mentioned before, trust
in an Agent develops through repeated Interactions with
it. If no interaction has taken place yet, initial trust [12] or
reputation can be used. For each interaction, an agent can
store its outcome as an Experience. Environmental factors
as well as the roles of the interacting agents are captured
in the TrustContext. This concept can comprise any factors
that can change the behavior of an agent, such as the current
time of day, the duration of the interaction, or the type of the
interaction partner.

TrustMetric

TrustContext

TrustValue

Interaction

Agent

Experience
-experience 0..1 -interaction 1

-trustContext 1

0..*

-ratedAgent 1

0..*

«creates»

-interactions 0..*

1-interactionPartner 1

0..*

-metrics 1..*

0..* -trustContext 1

0..*

Fig. 1. Concepts for the measurement and use of trust in a MAS

When one or more interactions have been completed and
an agent (the initiator) wants to determine the trustworthiness
of another agent (the trusted agent)1, a TrustValue for the
trusted agent in a specific trust context is calculated using
one of the TrustMetrics. Such metrics use the experiences
with the trusted agent to determine a trust value and can be
used to implement different trust models. In some cases, the
required calculations are complex and it might be necessary
to transform the data collected in the experiences, e.g., to
statistical data. These intermediate data can then be interpreted
to yield a trust value. Such a transformation of the measured
data into intermediate data and interpretation to a trust value
can be aided by a corresponding infrastructure in a MAS that
allows to store experiences, provides interfaces for metrics and
trust contexts, and allows to derive trust values [13].

Depending on the concrete requirements of the modeled
system, the metrics can also deal with some of the aspects of
trust mentioned in the introduction. It might, e.g., be beneficial
to discount older experiences and base the calculation of
the trust value only on recent ones. Descriptions of different
metrics that incorporate this aspect can be found in [14].

III. PATTERNS FOR DIRECT TRUST, REPUTATION, AND
IMPLICIT TRUSTED COMMUNITIES

In the following, we propose three patterns that can be
used to incorporate three different mechanisms to measure
and utilize trust into MAS. The first pattern (see Sect. III-A)
deals with trust through direct observation (from now on
abbreviated as direct trust). It is applicable in situations
where the initiator had previous direct interactions with a
trusted agent. The second pattern (see Sect. III-B) introduces
reputation into a system, i.e., the possibility to learn how other
agents rate a trusted agent’s trustworthiness on the basis of
their experiences with it. The third pattern (see Sect. III-C)
shows a way to establish Implicit Trusted Communities (ITCs)
within a MAS. These are groups of interacting agents that
build upon experiences from direct interactions and reputation.
To describe these patterns, we use a notation that is based on
the notation of Gamma et al. [15]. For each pattern, we give
a short definition of relevant terms in the Motivation.

A. Direct Trust Pattern

1) Intent: Measure and obtain an agent’s personal trust in
an interaction partner.

1Both initiator and trusted agent will be used in the paper, even though an
initiator can decide not to trust a trusted agent after evaluating its trust value.

2) Motivation: Direct trust is defined as the trust of an
initiator a1 in a trusted agent a2, based on a1’s personal
experiences with a2 by analyzing a2’s behavior in direct
interactions. Since the behavior of a2 may vary with the
context in which interactions take place, direct trust depends
on a trust context. If the agents participate in an electronic
market, a2 may, e.g., behave differently as a seller and as a
buyer. Depending on the system, even the product that is traded
may influence a2’s behavior. Because experiences that were
made in the past may lose their relevance over time, direct trust
is an aggregated representation of a subset of all experiences
with an interaction partner in a specific trust context.

In many situations, the knowledge of an agent’s direct trust
in its interaction partners is relevant to assess the potential
value or risk of an interaction with one of these agents.
Agents knowing how their interaction partners usually behave
in interactions can prefer more trustworthy alternatives or take
measures that ensure the quality of an interaction’s outcome.

3) Applicability: The Direct Trust pattern is applicable
when the knowledge of an agent’s direct trust in its interaction
partners is essential, the same agents interact with each other
frequently, and it is valid to assume that the prior behavior of
an interaction partner is indicative of its future behavior.

4) Structure and Participants: Fig. 2 shows the structure
of the pattern. Initiator and trusted agents are instances of
Agent. The initiator wants to evaluate its DirectTrustValue

for a trusted agent (ratedAgent) in a specific trustContext.
The resulting trust value depends on Experiences the initiator
made with the trusted agent in the course of Interactions

initiated by the initiator in which the trusted agent acted as
interactionPartner. To evaluate experiences, the initiator
uses one of several DirectTrustMetrics which transform and
interpret the experiences with ratedAgent in trustContext

into a DirectTrustValue.

+getExperiences(agent : Agent, trustContext : TrustContext) : List<Experience>
+calculateDirectTrust(agent : Agent, trustContext : TrustContext, metric : DirectTrustMetric) : DirectTrustValue

Agent

+transformAndInterpret(exps : List<Experience>) : DirectTrustValue

DirectTrustMetric

Interaction

Experience

DirectTrustValue

TrustContext -trustContext

1

0..*

-trustContext 1

0..*

-experience 0..1 -interaction

1

«creates»

-interactions 0..*

1-interactionPartner 1

0..*

-metrics 1..*

0..* -ratedAgent 1

0..*

Fig. 2. Direct Trust pattern

5) Collaborations: Fig. 3 illustrates the procedure for
determining an agent’s trustworthiness. Whenever an ini-
tiator a1 wants to obtain its direct trust value dt in a
trusted agent a2 for a trust context c, it calls the method
calculateDirectTrust(a2,c,m), where m is the metric that
should be used to generate the direct trust value dt. Thereupon,
a1 gathers all experiences made with a2 in c in a list
expList by calling getExperiences(a2,c). Afterwards, a1

calls transformAndInterpret(expList) on m. This initiates
the transformation and interpretation of experiences into dt,
which is returned to a1 afterwards.

m : DirectTrustMetric

dt : DirectTrustValue

a1 : Agent

create4:
5: dt

calculateDirectTrust(agent=a2, trustContext=c, metric=m):"dt"1:

transformAndInterpret(exps=expList)3:

getExperiences(agent=a2, trustContext=c):"expList"2:

Fig. 3. Direct Trust pattern: interactions

6) Consequences: It is important to identify a suitable
granularity of the trust context. If the definition of the trust
context is too fine- or coarse-grained, it is difficult to derive
representative direct trust values.

7) Implementation: Different trust metrics can be used
to implement trust models proposed in literature. Further,
different metrics can be used to obtain trust values for facets
like, e.g., reliability, by regarding appropriate experiences, or
to evaluate experiences from different perspectives, e.g., by
using different appraisal criteria and analysis methods.

In systems in which the trust context is irrelevant,
TrustContext, all associations to and from it, as well as
corresponding parameters in method signatures can be omitted.

B. Reputation Pattern

1) Intent: Find out how other agents appraise the trustwor-
thiness of an agent.

2) Motivation: Reputation is a measure of how other agents
rate the trustworthiness of an agent in a given trust context.
Thus, reputation is an aggregation of various experiences of
different agents with an agent acting in a specific trust context.

In some situations, an initiator has not made any experience
with a potential interaction partner yet or existing experiences
are not sufficient to derive a meaningful direct trust value.
To assess the trustworthiness, the initiator can then either use
an initial trust value (i.e., a default trust value) or retrieve
a reputation value based on the experiences of other agents
with the trusted agent. Although trust relations are in general
not transitive, reputation thereby allows to gauge other agents
much better than initial trust. In addition, there are situations
in which certain decisions should not be made on the basis
of one-sided experiences or can be improved by utilizing a
combination of direct trust and reputation.

3) Applicability: The Reputation pattern is applicable when
interaction partners often change, untrustworthy agents have a
detrimental effect on the system, and an agent’s prior behavior
is indicative of its behavior in interactions with other agents.

4) Structure and Participants: Fig. 4 shows the pattern
that can be used to integrate a reputation mechanism into
a system of interacting agents. It is similar to the Direct
Trust pattern (see Fig. 2). Each agent has one or more
RepuationMetrics defining how experiences should be ag-
gregated into a ReputationValue. Furthermore, each repu-
tation belongs to a specific trusted agent (ratedAgent) and
trustContext. In order to retrieve the reputation of an agent
in a specific trust context, agents have access to a component,
the so-called ReputationProvider, that provides an interface
for querying the reputation of arbitrary agents in the system.

+calculateReputation(initiator : Agent, agent : Agent, trustContext : TrustContext, metric : ReputationMetric) : ReputationValue

ReputationProvider

+getExperiences(agent : Agent, trustContext : TrustContext) : List<Experience>

Agent

+transformAndInterpret(exps : List<Experience>) : ReputationValue

ReputationMetric

TrustContextExperience

Interaction

ReputationValue«creates»

-ratedAgent

1

0..*

-interaction

1

-experience 0..1

-trustContext

1

0..*

-trustContext 1

0..*-repProv 1

-agents 0..*

-interactions 0..*

1-interactionPartner 1

0..*

-metrics 1..*

0..*

Fig. 4. Reputation pattern (poll)

5) Collaborations: As shown in Fig. 5, an initiator i can
query the reputation rep of a trusted agent a in a specific
trust context c by calling calculateReputation(i,a,c,m) for
a reputation metric m on the reputation provider repProv.
First, the reputation provider creates an empty list expList

as container to store the experiences of agents with a

in c. Then, it asks each agent ag in the list of known
agents (except initiator i because its experiences with a

should not influence a’s reputation) for experiences with a

in c by calling getExperiences(a,c), whereupon the re-
sult tempExps is added to expList. The accumulated expe-
riences are processed and transformed into rep by calling
transformAndInterpret(expList) on m. As the reputation
provider collects the experiences of the agents on demand,
this form of collaboration is called poll variant. A version
of the pattern where experiences are pushed to the reputation
provider is described in Sect. III-B7.

repProv : ReputationProvider

expList : List<Experience>

rep : ReputationValue

m : ReputationMetric ag : Agent

[ag : agents]

[ag.equals(i) == false]opt

loop

create2:

addAll(elements=tempExps)5:

transformAndInterpret(exps=expList)6:

getExperiences(agent=a, trustContext=c)3:

calculateReputation(initiator=i, agent=a, trustContext=c, metric=m):"rep"1:

create7:
rep8:

tempExps4:

Fig. 5. Reputation pattern (poll): interactions

6) Consequences: Because of the subjective and thus non-
transitive nature of trust, reputation cannot replace direct trust
in systems in which personal experiences are important to
identify trustworthy agents. However, since the Reputation and
the Direct Trust pattern share common concepts, it is is easy
to complement an implementation of the Direct Trust pattern
with an implementation of the Reputation pattern or vice versa.

7) Implementation: In some cases it is not desirable that
the reputation provider has full knowledge about all agents
and queries them when required. Instead, the agents in the
system can provide their experiences in advance, making the
process of gathering experiences unnecessary. This form of
collaboration is called push variant as the agents push their

experiences to the reputation provider.
The push variant differs from the poll variant in the

following points: every time an agent o registers an ex-
perience e with an agent a in a trust context c, it calls
updateDataBase(o,a,c,e) on the reputation provider. Hence,
the reputation provider manages a list of experiences exps.
Whenever an initiator i requests the reputation rep for a and
trust context c, the list of relevant experiences expList is
compiled by filtering the existing list of experiences exps

by calling filterExperiences(i,a,c). The resulting list
expList only contains experiences associated with a and trust
context c; experiences of i are not included. Apart from that,
the procedure does not change.

The pattern description assumes that each agent has ac-
cess to a central (perhaps distributed) reputation provider
acquainted with and available to all agents in the system. It is,
however, possible to have multiple reputation providers that
only know a subset of agents.

A different variant of this pattern can use the agents’
DirectTrustValues instead of their experiences to calculate
the ReputationValue.

As with the Direct Trust pattern, the TrustContext concept,
all associations to and from it, as well as corresponding
parameters in the method signatures can be omitted.

C. Implicit Trusted Communities Pattern

1) Intent: Form groups of trustworthy interaction partners.
2) Motivation: An Implicit Trusted Community (ITC) [3]

is a dynamic organization of agents that builds upon trust
relations. Each agent forms its own ITCs by applying a ranking
to all agents known to it and selecting only the best performers
ranked higher than a given threshold for interactions. This
implies that each agent can be a member of multiple ITCs and
the communities form only from the agents’ local decisions.
As a consequence, an agent is not aware of being a member
of an ITC and it is not mandatory that an ITC includes agents
that mutually trust each other.

ITCs evolve in systems in which many interactions take
place and that feature a large set of possible interaction
partners. The main idea is that by ranking these agents
according to direct trust and reputation, each agent eventually
chooses interaction partners that are expected to be partic-
ularly trustworthy and suitable. As a result, agents exclude
untrustworthy agents from their ITCs. A system using ITCs
can thus increase its robustness and improve its efficiency as
agents communicating within an ITC can abstain from certain
preventive security measures or result checking mechanisms.

The agents’ ranking may depend on additional criteria such
as an agent’s performance or current workload. Once an inter-
action is complete, the initiator gains experience with its in-
teraction partner. This influences the partner’s trustworthiness
and in turn the composition of the initiator’s ITCs.

3) Applicability: Systems in which it is beneficial to in-
teract and cooperate with trustworthy agents profit from the
application of the ITCs pattern. In particular, such systems
are characterized by various participants and a high number

of interactions. Furthermore, the Direct Trust and Reputation
pattern have to be applicable (see Sect. III-A and Sect. III-B).

4) Structure and Participants: Since the selection of inter-
action partners depends on direct trust and reputation values,
the ITCs pattern (see Fig. 6) makes use of several concepts
that are already known from the Direct Trust (see Sect. III-A)
and Reputation pattern (see Sect. III-B). This includes the
concepts DirectTrustValue and DirectTrustMetric as well
as the concepts ReputationValue, ReputationMetric, and
ReputationProvider. The set of possible interaction partners
is restricted to the set of agents the interaction’s initiator
is acquainted with (knownAgents). In order to decide which
agent should become an interaction partner, the initiator cre-
ates a ranking of all agents contained in knownAgents. This
is done by utilizing one of several RankingMetrics, each
drawing upon one or more metrics for evaluating the direct
trust (dtMetrics) in and reputation (repMetrics) of an agent.

+rankAgents(initiator : Agent, trustContext : TrustContext, agents : List<Agent>,
 repProv : ReputationProvider, threshold : TrustValue) : List<Agent>

RankingMetric

+calculateReputation(initiator : Agent, agent : Agent, trustContext : TrustContext, metric : ReputationMetric) : ReputationValue
ReputationProvider

+getExperiences(agent : Agent, trustContext : TrustContext) : List<Experience>
+calculateDirectTrust(agent : Agent, trustContext : TrustContext, metric : DirectTrustMetric) : DirectTrustValue
+chooseInteractionPartner(trustContext : TrustContext, metric : RankingMetric, threshold : TrustValue) : Agent

Agent

+transformAndInterpret(experiences : List<Experience>) : ReputationValue
ReputationMetric

+transformAndInterpret(exps : List<Experience>) : DirectTrustValue
DirectTrustMetric

Interaction

TrustContext

ReputationValue

Experience

DirectTrustValue

-trustContext 1

0..*

-rankingMetrics 1..*

0..*

-trustContext 1

0..*

-knownAgents 0..*0..*

-experience 0..1
-interaction
1

-trustContext
1

0..*

-repProv 1

-agents 0..*

-ratedAgent 1

0..*

«creates»

-repMetrics 1..*

0..*

-dtMetrics
1..*

0..*

«creates»

-interactions 0..*

1-interactionPartner 1

0..*

-ratedAgent 1
0..*

Fig. 6. Implicit Trusted Communities pattern

5) Collaborations: As depicted in Fig. 7, whenever ini-
tiator i is looking for a trustworthy partner for an interac-
tion which is to take place in a specific trust context c, it
calls the method chooseInteractionPartner(c,rM,t), where
rM is the ranking metric used to determine the interaction
partner and t is a threshold specifying a lower bound for
the TrustValue of ITC members. Subsequently, the method
rankAgents(i,c,knownAgents,repProv,t) is called on rM

with reputation provider repProv. The method returns a list
of agents in knownAgents, sorted according to their ranking.
To create this ranking, for each agent ag in knownAgents, rM
queries ag’s reputation by utilizing repProv for each reputation
metric repMetric in repMetrics and requests i’s direct trust
in ag for each direct trust metric dtMetric in dtMetrics. The
call doAdditionalStuff(ag,c) is a placeholder that repre-
sents all other calls and computations of a specific application
to further influence ag’s ranking.

Agents ranked higher than the given threshold t define
an ITC. chooseInteractionPartner(c,rM) finally returns the
first element of the ranking if it is ranked higher than t. This
procedure is repeated for every new interaction.

The method doAdditionalStuff(ag,c) may also introduce
some randomization into the ranking. Such a measure ensures
that, from time to time, less trustworthy agents are selected
as interaction partners. This is useful as these agents get a
chance to change their behavior, thus becoming trustworthy
and a member of an ITC again.

repProv : ReputationProvider

ranking : List<Agent>

rM : RankingMetrica : Agent

[ag : knownAgents]
[repMetric : repMetrics]loop

loop

rep4:

calculateReputation(initiator=i, agent=ag,
 trustContext=c, metric=repMetric)

3:

create8:
ranking9:

doAdditionalStuff(agent=ag, trustContext=c)7:

chooseInteractionPartner(trustContext=c, metric=rM, threshold=t):"ranking[0]"1:

rankAgents(initiator=i, trustContext=c, agents=knownAgents, repProv=repProv, threshold=t)2:

[dtMetric : dtMetrics]loop

calculateDirectTrust(agent=ag, trustContext=c, metric=dtMetric)5:
6: dt

Fig. 7. Implicit Trusted Communities pattern: interactions

6) Consequences: In contrast to the Direct Trust and Rep-
utation patterns, the ITC pattern not only evaluates an agent’s
trustworthiness but includes selecting interaction partners.

As chooseInteractionPartner(...) is called for a specific
trust context, ITCs evolve with respect to a trust context.
In general, ITCs do not necessarily contain agents that mu-
tually trust each other. In case it is crucial or beneficial
that interaction partners trust the interaction’s initiator, imple-
mentations of the method rankAgents(...) of the initiator’s
RankingMetrics have to consider this requirement in order to
form appropriate ITCs.

7) Implementation: If the trust context is irrelevant,
TrustContext, associations to and from it, and corresponding
parameters in the method signatures can be omitted.

IV. APPLYING THE PATTERNS

This section shows how to apply the patterns for Direct
Trust and for ITCs to an energy management system based
on Autonomous Virtual Power Plants (AVPPs) [16]. One of
the purposes of AVPPs is to subsume small, individual power
plants (e.g., solar panels or domestic combined heat and power
units) to allow them to participate in the energy market. If such
an AVPP also contains consumers, it can either offer energy in
case it produces more than is consumed locally or buy energy
from other AVPPs otherwise. In this context, an interaction is a
contract between two AVPPs. Compliance to a contract can be
evaluated by comparing the actual consumption or production
of energy with the stipulated amount of energy. If an AVPP
fails to produce or consume the amount of energy agreed upon,
its trust value will decrease and it will be more difficult or
expensive to buy or sell energy at the market at a later time.

[17] introduces an agent-based architecture for energy
management applications the patterns were applied to. Our
implementation includes energy producers and consumers, an

AVPP

REPContractComplianceMetric

DTContractComplianceMetric

TrustContext

-stipulatedPower : float
-price : float
-startDate : date

Contract

ReputationProvider

REPCredibilityValue

DTCredibilityValue

-actualPower : float

Measurement

RankingMetric

Experience
Duration

Product

-duration

10..*

-ratedAVPP 1

0..*

-ratedAVPP 1

0..*

-repProv

1

-avpps 0..* -trustContext 1

0..*

-trustContext 1

0..*

-knownAVPPs 0..*0..*

-experience 0..1 -contract 1

-repMetric

10..*

-dtMetric 10..*
-rankingMetric 1

0..*

«creates»

-duration 1

0..*

«creates»

-dtMetric 1

0..* -trustContext

0..*

-contractor 1

0..*-contracts 0..*

1

-product 1

0..*

-measurements 1..*

1

Fig. 8. Instantiation of the Direct Trust (relevant concepts are highlighted in
dark color) and Implicit Trusted Communities (all concepts relevant) pattern
for an energy management application

energy market, and other relevant concepts that measure and
use trust values to make appropriate decisions.

In Sect. IV-A, the Direct Trust pattern is used to gauge trust
between AVPPs if they negotiate with each other directly while
Sect. IV-B demonstrates the use of ITCs in case it is beneficial
for a group of AVPPs to negotiate with each other repeatedly.
Sect. IV-C hints at some important implementation issues.

A. Applying the Direct Trust Pattern

If the number of AVPPs that take part in the market is
small, it is likely that an AVPP makes contracts with AVPPs
it interacted with in the past. In such a case, an AVPP that
wants to negotiate a contract benefits from the consideration
of its direct trust in former interaction partners (e.g., it can
avoid contracts with AVPPs which failed to fulfill contracts).
As a result, the robustness of the entire system can be increased
which is of particular interest in safety-critical systems.

The instantiation of the Direct Trust pattern (see Sect. III-A)
is depicted by the concepts highlighted in dark color in Fig. 8.
As already mentioned, the concept AVPP maps onto Agent

and the concept Contract onto Interaction. A Contract

consists of the stipulatedPower that should be continuously
generated or consumed by the contractor at the agreed
upon price starting at startDate for a specified amount of
time (duration). During the validity of the contract, the AVPP
makes Experience with the contractor gained through periodic
Measurements that hold the average value of the actualPower

that has been generated or consumed by the contractor

within a given time period to enable statistical evaluations.
There are multiple measurements for each contract because
the interaction, i.e., the fulfillment of the contract, takes a long
time. Since the quality of the fulfillment of a contract may
depend on the Product (energy generation or consumption)
and the Duration of the contract, these two concepts form the
TrustContext. For example, an AVPP could be trustworthy in
situations in which it has to generate power for a short period
of time, but untrustworthy whenever it has to consume energy.
The direct trust value for a specific AVPP is determined by
a DTContractComplianceMetric which statistically evaluates

the experience with this AVPP by, e.g., calculating the devi-
ation of actualPower values from stipulatedPower values.
In this example, the direct trust value is thus a credibility
value (DTCredibilityValue).

B. Applying the Implicit Trusted Communities Pattern

The possibility to be dependent on AVPPs with which no
experiences have been made increases with the number of
AVPPs. As the number of energy producers and consumers
is steadily increasing, this is a realistic scenario for energy
management systems. Hence, ITCs and thus the combination
of direct trust with reputation becomes crucial to select trust-
worthy interaction partners.

As Fig. 8 shows, the concepts introduced in the previ-
ous section are completed by a ReputationProvider and a
reputation metric (REPContractComplianceMetric) that deter-
mines the trustworthiness of an AVPP by transforming and
interpreting the experiences of other AVPPs with a potential
contractor into a reputation value (REPCredibilityValue).
Again, the reputation value represents the AVPP’s credibility.
The RankingMetric creates a ranking based on direct trust
and reputation, and could be further influenced by the price of
energy production or consumption. Consequently, whenever
a suitable and credible contractor needs to be found, the
corresponding AVPP (i.e., the initiator) puts a request to its
RankingMetric.

C. Lessons Learned

The implementation of the patterns in the energy manage-
ment system showed the importance of the right granularity of
the trust context to keep experiences comparable. In addition,
the possibility of agents to cheat by lying about other’s trust
value or to collude has become evident. These issues will be
addressed in future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented three patterns that assist a
software engineer in enhancing a multi-agent system (MAS)
with mechanisms to measure and utilize trust and thus to
enable efficient cooperation between agents. All patterns share
that trust is derived from experiences made with an agent
in the course of previous interactions and that it depends
on the context in which an interaction takes place. First, we
introduced the Direct Trust pattern to determine an agent’s
trust into its interaction partners. For situations in which it is
worthwhile to make use of other agents’ trust in another agent,
we proposed the Reputation pattern. The Implicit Trusted
Community pattern is a guidance for creating implicit agent
organizations that build upon trust relations. We also showed
how to apply these patterns to an existing architecture.

Future work includes patterns for establishing trust in MAS
with respect to reliability and security. The latter encompasses
patterns for authentication and authorization in MAS as well
as security measures to avoid false reporting and collusion.
Furthermore, the integration of the patterns with the MAS
infrastructure mentioned in Sect. II will be pursued. The

implementation of different trust models as metrics is also
currently considered.

ACKNOWLEDGMENT

This research is partly sponsored by the German Research
Foundation (DFG) in the project “OC-Trust” (FOR 1085).

REFERENCES

[1] S. Ramchurn, D. Huynh, and N. Jennings, “Trust in Multi-Agent
Systems,” The Knowledge Engineering Review, vol. 19, no. 01, pp. 1–25,
2005.

[2] L. Mui, M. Mohtashemi, and A. Halberstadt, “A Computational Model
of Trust and Reputation,” in Proc. of the 35th Hawaii International
Conference on System Sciences, 2002, pp. 188–196.

[3] Y. Bernard, L. Klejnowski, J. Hähner, and C. Müller-Schloer, “Towards
Trust in Desktop Grid Systems,” in Cluster Computing and the Grid,
IEEE International Symposium on. Los Alamitos, CA: IEEE Computer
Society, 2010, pp. 637–642.

[4] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Eigentrust
algorithm for reputation management in P2P networks,” in Proceedings
of the 12th international conference on World Wide Web, ser. WWW
’03. New York, NY, USA: ACM, 2003, pp. 640–651.

[5] G. Suryanarayana and R. N. Taylor, “A survey of trust management and
resource discovery technologies in peer-to-peer applications,” Institute
for Software Research, University of California, Irvine, Tech. Rep. UCI-
ISR-04-6, 2004.

[6] M. Kinateder and K. Rothermel, “Architecture and algorithms for a
distributed reputation system,” in iTrust 2003, Heraklion, Greece, ser.
Lecture Notes in Computer Science, P. Nixon and S. Terzis, Eds., vol.
2692. Springer, 2003, pp. 1–16.

[7] C. Lin, V. Varadharajan, Y. Wang, and V. Pruthi, “Enhancing grid
security with trust management,” in IEEE International Conference on
Services Computing (SCC 2004), Shanghai, China. IEEE Computer
Society, 2004, pp. 303–310.

[8] B. Biel, T. Grill, and V. Gruhn, “Patterns of Trust in Ubiquitous
Environments,” in Proc. of the 6th International Conference on Advances
in Mobile Computing and Multimedia, ser. MoMM ’08. New York,
NY, USA: ACM, 2008, pp. 391–396.

[9] P. Li, M. Xiangxu, S. Zhiqi, and Y. Han, “A Reputation Pattern
for Service Oriented Computing,” in Proc. of the 7th International
Conference on Information, Communications and Signal Processing,
2009, pp. 1–5.

[10] J.-P. Steghöfer, R. Kiefhaber, K. Leichtenstern, Y. Bernard, L. Kle-
jnowski, W. Reif, T. Ungerer, E. André, J. Hähner, and C. Müller-
Schloer, “Trustworthy Organic Computing Systems: Challenges and
Perspectives,” in Proc. of the 7th International Conference on Autonomic
and Trusted Computing (ATC 2010). Springer, Oct. 2010.

[11] Y. Wang and J. Vassileva, “Trust and Reputation Model in Peer-to-Peer
Networks,” in Proc. of the 3rd International Conference on Peer-to-Peer
Computing, 2003.

[12] D. McKnight, L. Cummings, and N. Chervany, “Initial Trust Formation
in New Organizational Relationships,” The Academy of Management
Review, vol. 23, no. 3, pp. 473–490, 1998.

[13] R. Kiefhaber, F. Siefert, G. Anders, T. Ungerer, and W. Reif, “The Trust-
Enabling Middleware: Introduction and Application,” Universitätsbiblio-
thek der Universität Augsburg, Tech. Rep. 2011-10, 2011.

[14] R. Kiefhaber, B. Satzger, J. Schmitt, M. Roth, and T. Ungerer, “Trust
Measurement Methods in Organic Computing Systems by Direct Ob-
servation,” in IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing. Los Alamitos, CA, USA: IEEE Computer
Society, 2010, pp. 105–111.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison Wesley, 1995.

[16] G. Anders, F. Siefert, J.-P. Steghöfer, H. Seebach, F. Nafz, and W. Reif,
“Structuring and Controlling Distributed Power Sources by Autonomous
Virtual Power Plants,” in Proc. of the Power & Energy Student Summit
2010 (PESS 2010)), October 2010, pp. 40–42.

[17] G. Anders, L. Klejnowski, J.-P. Steghöfer, F. Siefert, and W. Reif, “Ref-
erence Architectures for Trustworthy Energy Management and Desktop
Grid Computing Applications,” Universitätsbibliothek der Universität
Augsburg, Tech. Rep. 2011-11, 2011.

